SOMDNCD: Image Change Detection Based on Self-Organizing Maps and Deep Neural Networks
نویسندگان
چکیده
منابع مشابه
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملSelf-organizing neural networks in classification and image recognition
Self-organizing neural networks are used for brick finding in OPERA experiment. Self-organizing neural networks and wavelet analysis used for recognition and extraction of car numbers from images.
متن کاملNonlinear ultrasonic image processing based on signal-adaptive filters and self-organizing neural networks
Two approaches for ultrasonic image processing are examined. First, signal-adaptive maximum likelihood (SAML) filters are proposed for ultrasonic speckle removal. It is shown that in the case of displayed ultrasound (US) image data the maximum likelihood (ML) estimator of the original (noiseless) signal closely resembles the L(2) mean which has been proven earlier to be the ML estimator of the ...
متن کاملNeural-based color image segmentation and classification using self-organizing maps
This paper presents a method for color image segmentation which uses classification to group pixels into regions. The chromaticity is used as data source for the method because it is normalized and considers only hue and saturation, excluding the luminance component. The classification is carried out by means of a self-organizing map (SOM), which is employed to obtain the main chromaticities pr...
متن کاملVideo Navigation Based on Self-Organizing Maps
Content-based video navigation is an efficient method for browsing video information. A common approach is to cluster shots into groups and visualize them afterwards. In this paper, we present a prototype that follows in general this approach. The clustering ignores temporal information and is based on a growing self-organizing map algorithm. They provide some inherent visualization properties ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2849110